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ILEE – International collaboration

ILEE

TIT (Japan)

PEER
(UCB)

MAE (UIUC)

MCEER
(Buffalo)

SAEC (Chile)

QuakeCoRE (NZ)

Canada



ASG, Auckland, New Zealand, 2017-05-02 3

ILEE facilities

20 m

70 m
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ILEE facilities
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ILEE facilities



ASG, Auckland, New Zealand, 2017-05-02 6

ILEE facilities
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ILEE facilities

• T-shape wall, 30m 
long 15m high

• Shear strength of 
600ton (at the top 
level of reaction wall)

• Bending moment 
strength of 9000ton-
m.
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ILEE facilities
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ILEE facilities
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ILEE
ILEE board of directors and scientific committee:

K. Kasai
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A. Pavese
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K. Chang
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I. Buckle
(USA)

B. Stojadinovic
(Switzerland)

T. Yang
(Canada)

K. Elwood
(New Zealand)

X. Gu
(China)

J. Li
(China)

S. Mahin
(USA)

Y. Zhou
(China)

X. Lu
(China)
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ILEE
Objectives of ILEE:
• Achieve earthquake resilience society through international 

effort using state-of-the-art experimental facilities

Strengths:
• Largest international earthquake engineering research network 

with the most advanced testing facilities;
• Facilitate the exchange of research personal, share facilities and 

publish cutting-edge research findings.
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ILEE
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1906 San Francisco Earthquake, USA

• Destroyed 80% of the “golden” city.

• Over 3,000 died and half of the population homeless.
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2011 Christchurch earthquake, New Zealand

Financial loss: $35 Billion USD
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2011 Tohoku earthquake, Japan

Financial loss: $235 Billion USD
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Earthquake engineering
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Deformation

damage 
threshold

collapse
onset

O
P
E
N

O
P
E
N

O
P
E
N

Performance LevelsIO LS CP

Frequency of Design 
Ground Shaking Level

Frequent Rare Very rare

FEMA 356

Performance-based design approach
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X

X

X

X

X
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X

+1200 demolitions (~70% of CBD) and counting!

2011 Christchurch earthquake, New Zealand
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High-performance structures

The measurement equipment shows 
that the building experienced as 
much as 23 cm of horizontal 
displacement. (Photo: Mori Trust Co., 
Ltd.)Sendai MT Building remain undamaged 

during the 2011 Great East Japan 
Earthquake.
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High-performance structures
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High-performance structures

Steel Link Column

Steel Link Beams

Steel Linked Column Frame

Moment Resisting Frame
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High-performance structures

Y P U

PF

YF

,Y PRF

,Y SEF

F



Combined 
system

Main 
structure

Structural 
fuse

Immediate 
occupancy Rapid return Collapse prevention
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Alternate design methods

Features & requirements EEDP DDBD PBPD P-spectra 𝜂-chart

Based on nonlinear SDOF responses     

Pre-select yielding mechanism & 

capacity design

    

Require structural period estimation   

Require preliminary member sizes  

Require nonlinear analyses  

Require minimum iterations    

Consider multiple shaking intensities  

Achieve multiple performance 

objectives
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• Energy-based design procedure.

• Allows designers to select a plastic mechanism to dissipate EQ energy.

Equivalent energy design procedure (EEDP)
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• Energy-based design procedure.

• Allows designers to select a plastic mechanism to dissipate EQ energy.

Equivalent energy design procedure
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• Energy-based design procedure.

• Allows designers to select a plastic mechanism to dissipate EQ energy.

• Targeted to achieve different performance objectives at multiple 
earthquake shaking intensities. 

• SLE: 

• DBE:

• MCE:

• Designers can select the member sizes to satisfy both the strength and 
drift limits without iteration!!

• Can be applied to different structural systems. Including new systems.

• No need to assume Rd R0 values.

Equivalent energy design procedure

No or minimum damage

Only damage to the structural fuses. No damage to the main 
structure

Not collapse

 “Immediate occupancy”.

 “Rapid return”.

 “Collapse prevention”.
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1. Define the performance objectives of the structure, by selecting the 
target shaking intensities and target drifts. 

2. Calculate the base shear for the whole system.

3. Calculate the yield force for the primary and secondary system.

4. Select the plastic mechanism.

5. Distribute the yield force vertically on the primary and secondary 
systems.

6. Size the yielding elements.

7. Capacity design the non-yielding elements.

Equivalent energy design procedure

 Able to achieve the target performances without iteration!!!
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Equivalent energy design procedure

Sa

T

MCE

DBE

SLE

• 1.0: Select the seismic hazards:
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Equivalent energy design procedure

MCE

DBE

SLE

• 1.0: Select the seismic hazards:

Sa

Sd
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Equivalent energy design procedure

F = m*Sa

=C0*Sd

MCE

DBE

SLE
C0: Coefficient to 

change roof drift from 
SDOF  MDOF 



MDOF

Sd

SDOF

≈C0*Sd

(Ref: FEMA 440)

• 1.0: Select the seismic hazards:
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Equivalent energy design procedure

F = m*Sa

=C0*SdY

DBE

SLE

YF
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,a DBEmS
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T is constant,  once SLE and  is defined.Y

• 2.0: Calculate the base shear:

Conservation of energy:

1NME



ASG, Auckland, New Zealand, 2017-05-02 33

Equivalent energy design procedure

F = m*Sa

=C0*SdY P

DBE

SLE
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Equivalent energy design procedure

F = m*Sa

=C0*SdY P

DBE

SLE

YF

PF

0 ,d DBEC S

,a DBEmS

0 ,d SLEC S 

,a SLEmS 

• 2.0: Calculate the base shear:

MCE

0 ,d MCEC S
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U
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Conservation of energy:
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Equivalent energy design procedure

• 2.0: Calculate the base shear:

F = m*Sa

=C0*SdY P U

YF

PF
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Equivalent energy design procedure

=C0*Sd

• 3.0: Distribute the base shear:

Secondary structure

Primary structure

F = m*Sa

Y P U

YF

PF

,Y PRF

Total structure

,Y SEF

,Y SEF
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Equivalent energy design procedure

• 4.0: Select the plastic mechanism (system dependent):

FY

FP

Y P U

F
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Equivalent energy design procedure

• 6.0: Size the yielding elements: Link beams in LC bays
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Equivalent energy design procedure

• 6.0: Size the yielding elements: Beam hinges in MF bays

Moment hinges
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Equivalent energy design procedure

• 6.0: Size the yielding elements: Beam hinges in MF bays

wgravity
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Equivalent energy design procedure

• 7.0: Capacity design the non-yielding elements: (Exterior column in LC bays)
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Prototype building

• 3-storey LCF building designed using EEDP
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Prototype building

• 3-storey LCF building designed using EEDP
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High-performance structures

Steel Linked Column Frame

y = 0.5; p = 2.0; 
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High-performance structures

Steel Linked Column Frame (DBE  IO)
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High-performance structures

Steel Linked Column Frame (MCE  CP)
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High-performance structures

𝐷𝐵𝐸: 𝐿𝐶 𝑀𝐹

𝑀𝐶𝐸: 𝐿𝐶 𝑀𝐹
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High-performance structures
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High-performance structures

4 bays @ 30'=120'

1
4
'

3
@
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Buckling Restrained Knee Braced Truss MF (BRKBTMF):

Univ. of 

Michigan

IIT, 

Kanpur
King Mongkut’s

Univ. of Tech.
UBC
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High-performance structures

Buckling Restrained Knee Braced Truss MF (BRKBTMF):

Univ. of 

Michigan

IIT, 

Kanpur
King Mongkut’s

Univ. of Tech.
UBC
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High-performance structures

4 bays @ 30'=120'
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Force-deformation response of BRB

OpenSees model
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High-performance structures
Lateral System – multiple performance objectives
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Dynamic response
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High-performance structures

1

2

3

0 2 4

F
lo

o
r

Median strain [%]

1

2

3

0 2 4

F
lo

o
r

Median strain [%]

1

2

3

0 2

F
lo

o
r

Median strain [%]

1

2

3

0 0.04 0.08

F
lo

o
r

Median rotation [rad]

1

2

3

0 0.04 0.08

F
lo

o
r

Median rotation [rad]

1

2

3

0 0.04 0.08
F
lo

o
r

Median rotation [rad]

SLE DBE MCE

BRB

MH



ASG, Auckland, New Zealand, 2017-05-02 57

Lateral System – multiple performance objectives
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4 bays @ 30'=120'
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BRKBTMF

High-performance structures

Hybrid simulation testing
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UBC-GTS Smart Modulus Structure 

• Light weight
• Fast construction
• Earthquake resilient
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Summary and conclusions
Earthquake is one of the most devastating natural hazards.

Advanced technologies both in simulations and 
experimental testing have been developed. 

Novel resilient structures are being developed.

Lower initial cost: 

Not significantly affected by the architecture layout.

Higher structural performance: 

Lower structural demand (floor acceleration and 
ISD).

Lower repair cost and downtime. 

Together, we can develop high performance structural 
systems that is more economical, efficient and robust 
towards future earthquake design.
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Question?

Tony T.Y. Yang, Ph.D., P.Eng.
Professor, Executive Director
International Joint Research Laboratory of Earthquake Engineering
Email: yang@ilee-tj.com; yang@civil.ubc.ca; 
http://www.civil.ubc.ca/people/faculty/faculty-yang.php
http://smartstructures.civil.ubc.ca/

Thank you for your attention!

mailto:yang@ilee-tj.com
mailto:yang@civil.ubc.ca
http://www.civil.ubc.ca/people/faculty/faculty-yang.php
http://smartstructures.civil.ubc.ca/
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Tony T.Y. Yang, Ph.D., P.Eng.

Professor, Executive Director

International Joint Research Laboratory of Earthquake Engineering

Email: yang@ilee-tj.com

Shanghai, China
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Vancouver, Canada

I look forward to welcoming you to beautiful British Columbia
Prof. Tony T.Y. Yang, Ph.D., P.Eng. 
Email: yang@civil.ubc.ca

mailto:yang@civil.ubc.ca

