Upcoming amendments to NZS 3101:2006

Rick Henry and Dene Cook

SESOC AGM Feb 2015

Committee

Angela Lui	Carl Ashby
Nicholas Brooke	David Wood
Alistair Russell	Rod Fulford
Dene Cook	Des Bull
Richard Fenwick	Rajesh Dhakal
S R Uma	Stefano Pampanin
Donald Kirkcaldie	Rick Henry
Graeme Lawrance	Jason Ingham

Terms of Reference

- Develop amendment to NZS3101 with due consideration of:
 - Recommendations of Canterbury Earthquake Royal Commission
 - SESOC interim design guidance
 - SNZ data base of questions/ actions
- Emphasis on big picture issues, recognise that some "judgments" will require further research

100000

222 THE UNIVERSITY

FACULTY OF ENGINEERING

OF AUCKLAND

Significant changes

- Changes to terminology and clause order
- Member elongations
- Support details for precast floor and stair units
- Wall design and detailing
 - minimum reinforcement
 - singly reinforced walls
 - transverse reinforcement and detailing
 - axial load limits
 - coupled wall systems

Elongation

• New guidance based on past research

Elongation

- When elongation needs to be considered (2.6.5.10)
- Estimate the magnitude of elongation (7.8)
- Detailing for elongation:
 - Stairs and ramps (2.6.10, 18.7.6)
 - Cladding panels and fixings (17.6.2)
 - Support of floor elements (18.7.4, 18.8.1)
 - Coupling beams (11.4.9.2)
 - Axial forces induced in walls (11.4.1.4)

Stairs and ramps

• Designed for 1.5 times the peak inter-storey drift (MCE) + elongation + tolerance (18.7.6)

Floor seating lengths (low-drift)

- Minimum seating lengths apply (18.7.4) when:
 - Drift less than 0.6%
 - Elongation less than 10mm
- Reduction if edge is armoured

• More detail on bearing stress checks

Floor seating lengths (high drift)

- Larger seating (18.8.1) when:
 - Drift greater than 0.6%
 - Elongation greater than 10mm
- Calculated from:
 - Bearing area
 - Cover loss
 - Elongation + support rotation
 - Unit spalling
 - Shrinkage
 - Tolerances

Support details

Hollowcore (no change)

Tees (armouring trigger)

Support details - Ribs

Further research and testing in progress

Walls – EQ damage

Lack of Distributed Flexural Cracking

Minimum Vertical Reinforcement

- NZS 3101:1995 = 0.14-0.23%
- NZS 3101:2006 = 0.25 0.41% +

Dependent on concrete strength

Minimum Vertical Reinforcement

- Nominally ductile (11.3.12.3)
 - Current (2006) minimum is okay for these walls
 - Commentary regarding concrete strength
 - Change from total to distributed ratio $(\rho_n \rightarrow \rho_l)$

$$\rho_l > \frac{\sqrt{f_c'}}{4f_v}$$

[= 0.27%+]

Minimum Vertical Reinforcement

- Limited ductile and ductile hinges (11.4.4.2)
 - Wall ends $(0.15L_w)$:

- Secondary crack formation:
 - Average long-term tensile strength
 - Dynamic strength enhancement
 - Shrinkage
- Middle web region:

• Web ratio must be at least 30% ratio in end region

Ductile walls

- 1. Minimum end zone reinforcement (p_{le}) ensures close spacing of cracks spread of yielding.
- 2. Minimum central region reinforcement (p_l or $0.3p_{le}$) ensures cracks extend through the tension zone.

Singly reinforced walls

- Lack of robustness
 - Connections and bar anchorage
 - Shear and stability
 - Fracture of reinforcement
 - Bi-direction loading?
- Changes:
 - Strength reduction factor
 - $\phi = 0.7$ (2.3.2.2)
 - Essentially elastic during MCE EQ
 - Clarify maximum reinforcement content
 - $p_l < 1\%$ (11.3.1.5)

Figure 5.106. Unit 5 at end of test. Note buckled longitudinal bars.

Figure 5.51: Unit 2: Out-of-plane displacement on the East edge at $\mu_d\!=\!-\!4\!\!\times\!\!1$

Anchorage of horizontal reinforcement

- Singly reinforced walls (essentially elastic \rightarrow OK)
- Doubly reinforced walls (11.3.12.5)

Transverse ties (plastic hinge regions)

- In compression region (11.4.5.2)
 - Always required for every bar
 - Removed clause that permitted no ties when $\rho_l < 1\%$

Transverse ties (plastic hinge regions)

- In central region, when triggered by (11.4.5.3):
 - High shear
 - Low cover
 - Large curvatures (large tensile reinforcement strains)

Axial load and slenderness

- Issues:
 - Wall elongation can significantly increase wall axial loads
 - Instability and buckling are complicated...
- Design axial load $< 0.3\phi f'_c A_g$ (11.3.1.6)
 - Additional commentary added regarding elongation
- Slenderness:

 $- L_n/t < 20$ when $N^* > 0.2\phi f'_c A_g$ (11.3.7)

• Further Research required

Coupled Wall systems

 Coupling beam elongation/deformation restrained by floor diaphragms and wall piers

Elevation on coupled walls

Conventional design assumption no axial load in coupling beam

Shear transfer = $2 A_{s,d} f_y \sin \alpha$

Coupled Wall systems

- Coupling beam over-strength calculated with axial restraint force provided by floor (11.4.9.2)
 - Similar to floor slab contribution to beam over-strength already in NZS 3101
 - Ongoing research on this topic

Questions?

Rick Henry, Dene Cook, Alistair Russell, Jason Ingham

